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A method of analyzing the t empera tu re  s t r e s s e s  in active elements  of optical quantum gen-  
e r a to r s  operat ing in the pulsed and continuous modes is elucidated.  

The p resence  of a nonuniform tempera ture  field in the active body of an optical quantum genera tor  
(laser) specif ies  the appearance of t empera tu re  s t r e s s e s  which, in turn, resul t  often in significant de fo rma-  
tion and f i ssur ing  of the sample ,  and degradation of its cha rac t e r i s t i c s .  

Let  us examine the active element  of a l a se r ,  of c i r cu la r  cyl indrical  shape.  The existence of three 
principal  normal  s t r e s s e s ,  radial  Crr, tangential or0, and axial Crz, resul t s  f rom an analysis of the equil ibrium 
conditions of a volume element  of the c i rcu la r  cylinder cut in the shape of an annular sec to r .  If it is as -  
sumed that the active substance is an isotropic medium, the thermophysicaI  and s t rength cha rac te r i s t i c s  of 
which (fi the coefficient  of l inear  t empera tu re  expansion; u the Poisson ratio; and E the elast ic  modulus) are  
independent of the t empera tu re ,  then the magnitudes of the mentioned s t r e s s e s  are  de termined in general  
fo rm f rom the relat ionships  [1]: 

BE ar - -  {f~(F~ + [~(Fo)]o.,.,}, (1) 
2(1 ~-v) 

ao _ [~E {--2@(r,, Fo) -~- [~-(Fo)]o.,-[- [@[Fo) o .... ,, (2) 
2 (1 --v) 

!~E [O'(Fo)]o.+, } + e~e, % --  { - -  {} (Q, Fo) -~- v (3) 
1 - - v  

where  ~(Fo)]0.~rl  is the mean-volume excess  t empera tu re  of a cylinder of radius r I wri t ten as follows: 

TI 

[~(Fo)]o..~,- r~ ~(q, Fo)qdq. (4) 

0 

In the approximation of plane deformation,  i .e. ,  upon compliance with the condition 

1 

j ' qa f lQ  = O, 
0 

it is easy  to show that the following equali t ies are  valid at any time: 

at any point of the cyl inder  

on the cyl inder  surface (for r I = 1) 

at the center  of the cyl inder  (for r 1 = 0) 

G z = {5 z -~ -  U 0 ,  

(~r == 0 ,  f f z = ( Y 0 ,  

G r = O'o. 

(5) 

(6) 

(7) 

(8) 
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Fig.  1. Tempera tu re  drop in f ract ions  of ~imp between the cen-  
te r  and surface  of the active element  of a l a se r  in the quasi-  
s ta t ionary mode: a, c) t empera tu re  drop AT for  Fo = FOc; b, c) 
maximum tempera tu re  drop AT m (dashed curve corresponds  to 
the t empera tu re  drop for a CW laser ) .  

F o r  prac t ica l  purposes  it is in teres t ing to es t imate  the maximum s t r e s s e s .  They can originate dur -  
ing the format ion  of a maximum tempera tu re  difference between the center  and the sur face .  Determinat ion 
of this la t ter  is fraught with great  difficulties since it is not known for  which value of Fo the t empera tu re  
s t r e s s  calculation should be executed.  

As has been established ea r l i e r  [2], the quasis ta t ionary tempera ture  mode of the active element  of 
a pulsed l a se r  is charac te r i zed  by the fact that for  quasicontinuous pulses the same tempera tu re  field is 
reproduced  over  the sample cross  section to the end of each cycle .  During adiabatic homogeneous pumping, 
the tempera ture  of each point of the sample increases  by the same quantity $imp, i .e. ,  no change is observed 
in the profi le  of the t empera tu re  field under  the mentioned conditions of pumping p ro g re s s .  During cooling, 
the t empera tu re  field var ies  in both magnitude and profi le:  

@ (r a, Fo) = ~ ,  2~impBiJ o (~t,~q) exp (-- ~n2Fo) (9) 
Xm,,I  n=, Jo (P~)[la~ q- Bi2l [1 - -  exp (--p~Foc) ] 

The deduction can be made that the profi le  of the t empera tu re  field at the beginning and ending of the 
cooling period will be the same if, within one cycle,  the t empera tu re  difference between the center  and the 
surface  of the active body f i r s t  s t a r t s  to increase ,  r eaches  a maximum value, and then again dec rea se s .  

Attention is not ord inar i ly  turned to this fact .  Computations are  ca r r i ed  out for  Fo = FOc; the r e -  
sults often turn out to be lowered,  and the strength condition for  the sample may not even be satisfied in 
p rac t i ce .  

By using the Minsk-22 e lec t ronic  computer  in conjunction with Eq. (9), we succeeded in tracing the 
change in the t empera tu re  drop between the center  and the surface  of the active body within a cycle in the 
quasis ta t ionary mode for  a number of Blot values.  The computation was pe r fo rmed  for  n = 6; the numer ica l  
values of the eigennumbers Pn were  taken f rom a table p resen ted  in the monograph [3]. The resu l t s  of the 
computations a re  p resen ted  in Fig. 1. 

As is seen f rom Fig. 1, the d iscrepancy in the quantities AT m and AT can depend essent ia l ly  on the 
effect iveness of the cooling sys tem used and the cycle duration. The grea tes t  d iscrepancies  a re  rea l ized  
for  Bi---r As the cycle  duration diminishes,  the dependence of the difference [ATm-AT ] on the number 
Fo c is much weaker,  and for  Fo c < 0.01 is p rac t ica l ly  absent.  For  Fo c < 0.01, the quantity AT m is p rac t i ca l -  
ly independent of the number Bi also.  This means that the t empera tu re  mode for  quasicontinuous pulsing is 
equivalent to the t empera tu re  mode of a CW lase r :  in the continuous mode the quantity AT is independent of 
the cooling sys tem eff iciency and is defined by [4] 

1 AT = - -  (10) 
4Fo c 

The re fo re ,  in this case  the t empera tu re  s t r e s s e s  are  determined by means of the express ions  

I~EO imp &T,, 
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F ig .2 .  T e m p e r a t u r e  s t r e s s  d i s -  
t r ibut ion over  the radius  of the 
act ive  body (c~, kg/cm2).  

~E~impA 5 % - -  (1 - -  3r~), (12) 
4(1 - -v )  

I~E~impAV 
% = . . . . . .  ( 1 - -  2r~). (13) 

2(i - -v )  

For  Fo > 0.1 it is imposs ib le  to use  (11)-(13) since the r e su l t s  ob- 
tained a re  lowered (see the locat ion of the dashed curve  in Fig.  lb) .  
Using (1)-(3) with (9) taken into account is difficult,  espec ia l ly  for  
cases  of taking account of the nonuniformity in pumping and heat  ex-  
change during pumping,  as well  as because  of the need to de te rmine  
the t ime Fo at which AT m is r ea l i zed .  The p r o b l e m  is s impl i f ied  
somewhat  for  calculat ions by means of re la t ionships  f r o m  approx i -  
mate  solutions obtained by using a var ia t iona l  method, say [5, 6]: 

exp (--  k Fo) (14) 
(r I, Fo) == PB0[rnp 1 - -  exp ( - -  k Foc) 

where  

B Bi 8Bi 1 - -  0.5B (15) ; k =  ; P 
B ~ 2 + Bi 4 -i- Bi t - -  B +  - -  
3 

The method of de te rmin ing  the integrat ion constants  in this case  reduces  to the fact  that for  the b e -  
ginning of the cooling per iod ,  i .e. ,  for  Fo = 0, the t e m p e r a t u r e  di f ference between the cen te r  and the sur face  
turns  out to be somewhat  g r e a t e r  as com pa red  with the cor responding  quantit ies obtained f r o m  the exact  
solut ions.  The quantity AT is de te rmined  f r o m  the expres s ion  

PB 
AT = 1-- exp (--/eFoc) " (16) 

Taking account of the quite approx imate  va lues ,  as a rule ,  of the magnitudes of the the rmophys ica l  
and s t rength  c h a r a c t e r i s t i c s  of act ive  ma te r i a l s ,  the las t  r e m a r k  turns out to be quite essent ia l  and affords 
the poss ib i l i ty  of r ecommend ing  the use  of Eqs.  (11)-(13), taking account of (16), for  the de te rmina t ion  of the 
t e m p e r a t u r e  s t r e s s e s .  

In Fig.  2 we p re sen t  as an i l lus t ra t ion  the r e su l t s  of computing the t e m p e r a t u r e  s t r e s s e s  in a specif ic  
sample  of neodymium glass  (length 75 ram, d i ame te r  4 mm) with wa te r  cooling (Bi = 15) at a pulse r epe t i -  
tion ra t e  f = 0.1 Hz (Fo c ~ 0.1). It was a s sumed  in the computat ions that E = 6.6 �9 105 kg/cm2;  ~ = 0.25; fi 
= 1 .08 .10  -~ deg -1. C a l o r i m e t r y  of the act ive body de te rmined  the t e m p e r a t u r e  jump during the pumping as 
Oim p = 4~ 

r i = r/R 

~Z 
Fo = ar/R 2, Fo e = a rc /R2  
T 

q'C 
Bi = aR/k 

N O T A T I O N  

is the d imens ionless  running radius  of the cylinder;  
is the re la t ive  s t r a in  along the cyl inder  axis; 
a re  the Four i e r  numbers  for  the t imes  7 and Vc; 
is the running t ime; 
is the t ime  between a l t e rna te  pumping pulses  (cycle duration); 
is the Blot number .  

The remain ing  notation is taken f r o m  [3]. 
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